As the largest nonprofit funder of psoriatic disease research in the world, NPF’s investment strategy focuses on drug development and other approaches to improve health outcomes for everyone with psoriatic disease. Psoriatic disease affects the entire body, not just the skin and joints. Research shows that people with psoriatic disease are at higher risk for conditions like diabetes, depression and cardiovascular disease. These conditions, called comorbidities, can have a negative impact on quality of life and lead to poor long-term health outcomes.

We are committed to discovering a cure that addresses all of the effects of psoriatic disease. Our investment in comorbidity research has fueled pioneering investigations that point toward the possibility that psoriatic disease therapies could improve comorbidities, too. Our funding strategy, made possible by our generous supporters, is illustrated through the research journey of cardiovascular comorbidities in psoriatic disease.

Decades ago, scientists discovered that people with psoriatic disease were at higher risk of developing cardiovascular disease. But they didn’t understand why. In 2009, researchers funded by NPF discovered that skin inflammation may drive vascular inflammation by increasing inflammatory cells and proteins in the skin and bloodstream. Vascular inflammation can lead to plaque buildup in the arteries, a major sign of cardiovascular disease.

The road to better treatments begins with basic research that answers fundamental questions about disease mechanisms. At this early stage, scientists need critical support to test their promising ideas. NPF’s Discovery Grants advance basic science research.

Bridging the gap between the laboratory and daily life, translational researchers do the costly and time-consuming work of converting discoveries from basic research into treatments that can be tested in clinical trials. NPF supports translational research through our Translational Research Grants program.
Decades ago, scientists discovered that people with psoriatic disease were at higher risk of developing cardiovascular disease. But they didn’t understand why. In 2009, researchers funded by NPF discovered that skin inflammation may drive vascular inflammation by increasing inflammatory cells and proteins in the skin and bloodstream. Vascular inflammation can lead to plaque buildup in the arteries, a major sign of cardiovascular disease.

Following the 2009 study, another team of researchers funded by NPF used high-tech imaging to discover that the inflammation driving psoriasis can be seen all over the body, including the blood vessels. Subsequent studies led to more advances, including the discovery—funded by a 2014 NPF grant—that more severe psoriasis leads to more severe vascular disease.

Clinical research is the phase of drug development when treatments are tested in patients to measure their clinical effects. Many NPF fellowship recipients work on clinical trials with the aim of bringing new drugs to market, or finding new uses for drugs that are already available.

With the help of funding from NPF’s fellowships, researchers are currently testing whether systemic psoriatic disease drugs that are already on the market can improve cardiovascular disease symptoms as well as psoriasis and psoriatic arthritis. If so, patients may have a safe and effective way to reduce skin and vascular inflammation and dramatically improve their health outcomes.
DEAR FRIENDS OF NPF

Modern research has solved many mysteries of psoriatic disease. What was once thought of as a skin disease has been revealed as an immune-mediated condition with effects that can be felt throughout the body. With this new understanding have come great advances in treatments that improve lives.

But as the science of psoriatic disease has evolved, so have the challenges facing researchers. Part of this is a natural consequence of digging deeper into the science behind anything. The more you learn, the more complex your questions become.

Scientists are facing new obstacles, too. Financial realities have put research careers out of reach to many top young minds. And the pressure to secure funding by generating results has isolated researchers within the lab, separating them from the patients they serve.

The National Psoriasis Foundation (NPF) is responding to these challenges by creating new ways to support today’s researchers.

This means creating new grant programs. Along with Discovery Grants, Translational Research Grants, and Medical Dermatology Fellowships, we now offer new grants and fellowships to support young researchers and help them transition from one career stage to the next.

It also means creating new opportunities for researchers to directly engage with patients. NPF’s biennial Research Symposium and, starting in 2016, our annual Research Trainee Symposium, are designed to foster relationships between scientists and people living with psoriatic disease. But this kind of collaboration doesn’t just happen at conferences. Through Citizen Pscientist (p.18), patients and researchers can collaborate on research ideas whenever they go online.

NPF’s support for research has brought psoriatic disease to the leading edge of scientific discovery. But there are many more discoveries yet to be made. Keep reading to see how NPF has transformed the way we treat psoriatic disease and enlisted the most promising scientists in the search for a cure. With your support, we will see many more stories like these.

Sincerely,

Ben Lockshin, M.D., F.A.A.D.
Chair, Research Committee
Member, Board of Directors
National Psoriasis Foundation

Michael Siegel, Ph.D.
Director of Research Programs
National Psoriasis Foundation
OUR RESEARCH PRIORITIES

The mission of the National Psoriasis Foundation (NPF) is to drive efforts to cure psoriatic disease and improve the lives of those affected. That’s why our primary focus is to increase and support research to end these devastating diseases.

The research we fund is divided into these six categories.

RISK FACTORS
So researchers can determine who might be at risk for psoriatic disease and develop more personalized treatments for patients.

DIAGNOSIS
So doctors can identify patients with psoriasis and psoriatic arthritis as early as possible and decide on the best treatment.

HOW PSORIATIC DISEASE WORKS
So researchers can understand the causes and effects of psoriatic disease, in order to develop new ways to treat it.

TREATMENTS
So patients can have safer and more effective treatment options—and one day, a cure—for psoriatic disease.

TRAINING NEW PSORIATIC DISEASE RESEARCHERS
So the brightest minds in medicine can learn the most up-to-date techniques for caring for psoriatic disease patients and keep developing better treatments.

HEREDITARY STUDIES AND GENETICS
So researchers can determine who might be at risk for psoriatic disease and develop more personalized treatments for patients.

Total Investment
$15,087,544

The research we fund is divided into these six categories.
2016 DISCOVERY GRANTS

Discovery Grants allow researchers to undertake preliminary and “proof-of-concept” studies. The goal is to help researchers develop competitive grant proposals that will lead to long-term funding from the National Institutes of Health or other federal agencies. In 2016, NPF awarded seven one-year, $75,000 Discovery Grants.

Unnikrishanan Chandrasekharan, Ph.D.
Cleveland Clinic

Biologics that target a protein called TNF, such as Enbrel (etanercept) and Humira (adalimumab), revolutionized psoriasis treatment. This project studies ways to improve on these drugs by identifying more specific targets in the TNF pathway. New drugs with more specific targets could be as effective as anti-TNF biologics but have fewer side effects.

Joseph Larkin, Ph.D.
University of Florida

People with psoriasis are searching for effective treatments that improve their skin without causing side effects in the rest of the body. This project studies whether a molecule called SOCS-1, which is already present in the body, could be a safe and effective psoriasis treatment. Applied to the skin as a topical treatment, this molecule may be able to reduce psoriasis by disrupting communication between the skin cells and immune cells.

Golnaz Vahedi, Ph.D.
University of Pennsylvania

New biologics that target the IL-17 immune system pathway have delivered unprecedented results to psoriasis patients. But many questions need to be answered about how these drugs affect the body. This project studies the effects of these drugs on genes with the goal of developing more targeted treatments that have fewer side effects.

Brian Zabel, Ph.D.
Veterans Affairs Palo Alto Healthcare System

Although oral and injectable drugs can be good treatment options for people with moderate to severe psoriasis, most people with psoriasis use topical medications. This project aims to meet the demand for effective topical therapies by testing a new molecule called Chemerin C15 that can be applied directly to the skin.
A. Marilyn Sime Discovery Grant

Lihi Eder, M.D., Ph.D.
University of Toronto

We know that people with psoriatic disease have an increased risk of cardiovascular disease. This project investigates whether fats present in the blood of people with psoriasis can predict the onset of atherosclerosis, a sign of heart disease.

Karen and Dale White Discovery Grant on behalf of the National Psoriasis Foundation Staff

Andrew Johnston, Ph.D.
University of Michigan

In some people, tonsillitis can exacerbate psoriasis or trigger a new case of the disease. This project tests the bacteria living on the skin and tonsils of people with psoriasis as well as the chemicals these bacteria release, with the goal of developing new ways to treat psoriasis.

Ostrow Graff Family Discovery Grant

Amy Paller, M.D.
Northwestern University

Biologic drugs effectively treat psoriatic disease by targeting immune system pathways involved in inflammation. However, because biologics affect the whole body, they can carry the risk of side effects. This project tests ways of using topical nanoparticles to target the same pathways directly in the skin, investigating whether these particles can improve psoriasis symptoms without spreading to the rest of the body.
A lot can happen in three decades. It’s enough time for a half dozen presidents to take office, fashion trends to cycle in and out of style, and for children to grow up and have children of their own.

So why wasn’t it enough time to discover a cure for psoriatic disease? That’s what Carol Ostrow wants to know.

“I’ve had psoriasis in my family all my life,” said Ostrow, a member of the National Psoriasis Foundation Board of Directors. She can remember being a little girl and seeing her mother and brother struggle with the disease.

“Flash forward about 30 years, and two of my daughters developed psoriasis,” she recalled.

But the intervening years hadn’t revolutionized treatment options. To Ostrow, the therapies available to her children didn’t seem much better than the tar baths she watched her brother take.

“The advances weren’t great enough,” she said.

That’s why she and her husband, Michael Graff, decided to donate to NPF’s search for a cure.

“We just knew something had to be done.”

As longtime generous contributors to NPF, Ostrow and Graff have supported multiple NPF Discovery Grants. Discovery Grants fund pioneering and sometimes risky investigations into new treatment approaches.

This year, the Ostrow Graff Family Discovery Grant supports Dr. Amy Paller at Northwestern University, who is working to develop an innovative topical therapy that delivers powerful results.

When Ostrow imagines the future of psoriatic disease, she sees nothing. No psoriasis or psoriatic arthritis, that is.

“I’m for eradicating this disease,” she said.

Ostrow said she wants to help drive discovery on as many fronts as possible.

“So many doctors have so many promising theories, and so many ideas, and so many ways to apply their ideas. You can’t stop supporting that,” she said.
If you have psoriasis, you’re probably no stranger to moisturizer. But what if your moisturizer could do more than soothe your plaques? What if it had a special ingredient that could drill deep inside your skin to actually stop your psoriasis?

One day it might.

Dr. Amy Paller, a dermatologist and researcher at Northwestern University, is working to develop a tiny substance that, when added to a gel or ointment and applied to the skin, may prevent one of the major immune system responses that leads to psoriasis.

As the recipient of the Ostrow Graff Family Discovery Grant, Paller now has the resources she needs to transform her discovery into a new treatment.

If she’s successful, it could revolutionize treatment for the vast majority of psoriasis patients—up to 80 percent, Paller said—who rely on topicals.

Her topical would target the same immune system pathway as some of the most cutting-edge biologic treatments. Instead of using a large antibody that has to be injected, Paller is targeting IL-17, a pro-inflammatory protein, using gene regulation.

“Every protein starts off as a DNA code,” Paller explained. The material she’s created disrupts that code by binding to genetic material inside the cell. “It stops it cold from turning into a protein.”

With her NPF funding, she’ll finally be able to bring her treatment closer to the clinical trial phase.

Without her Discovery Grant, the project may have languished in the lab.

“More than ever, people have been having trouble getting grants to do research, and particularly research that might have some risks,” she said. “We did not have any other funding for this.”

NPF’s generous supporters are vital partners in the research process, Paller said.

“We are all responsible for improving care. The doctors can only work with what they have. The scientists can only do innovative discovery work that can translate into new treatments if there is funding,” she said.

“I think that for those who can afford to pitch in toward this effort, it’s extremely important to do that.”
2016 TRANSLATIONAL RESEARCH GRANTS

NPF Translational Research Grants focus on helping scientific discoveries from clinical, laboratory or population-based studies move rapidly into treatments that have a clear benefit for patients with psoriatic disease. In 2016, NPF awarded three two-year, $200,000 Translational Research Grants.

Stephen Ley, Ph.D.
The Francis Crick Institute
One of the most common genetic changes that can lead to psoriatic disease happens to a gene called CARD14. Mutations in this gene can activate proteins that lead to inflammation. This project analyzes how this mutation activates these proteins. Discovering the mechanism behind the mutation may lead to the development of treatments that target this pathway.

Peter Marinkovich, M.D.
Stanford University
The past few years have seen remarkable advances in treatment with targeted therapies delivering powerful results. But because many of these treatments are systemic, they can suppress the immune system throughout the body. Building on discoveries made in previous NPF-funded research, this project aims to develop a new highly effective topical therapy that only affects the skin and not the entire immune system.

Mrinal Sarkar, Ph.D.
University of Michigan
Mutations in a gene called TYK2 can lead to psoriatic disease. One possible way of treating psoriatic disease is by targeting proteins related to this gene. This project explores how changes in TYK2 can lead to psoriasis and psoriatic arthritis, and works toward developing new treatments targeting these proteins.
In a special collaboration with the Arthritis National Research Foundation (ANRF), NPF and ANRF jointly fund one translational research project focused specifically on psoriatic arthritis.

Bill and Jodi Felton Psoriatic Arthritis Research Grant

Lam (Alex) Tsoi, Ph.D.
University of Michigan

Waiting even six months after symptoms appear to begin treating psoriatic arthritis may cause irreversible joint damage. This project aims to make it much easier to diagnose psoriatic arthritis by identifying a genetic biomarker for psoriatic arthritis. If successful, this work would provide a genetic screening tool to predict the onset of psoriatic arthritis.
NPF RESEARCHERS CLIMB THE LADDER OF NIH FUNDING

Growing the pipeline of psoriatic disease researchers is critical to NPF’s mission. We work hard to identify the brightest young minds all over the world, searching for scientists and doctors with exceptional potential.

Through programs like our Discovery Grants and fellowships—and starting this year, our Early Career Research Grants—we offer funding that inspires rising stars of medicine to dedicate their careers to psoriasis and psoriatic arthritis.

The generosity of our donors ensures that we can continually enlist up-and-coming researchers in the search for a cure. But we can’t do it alone. That’s where the National Institutes of Health (NIH) steps in.

The NIH awards highly competitive Career Development Awards to junior researchers poised to make pioneering contributions to medicine. Some of our most talented researchers have gone on to win K awards, as they are known, multiplying their initial NPF investment into many more years of funding.

Dr. Andrew Johnston, NPF researcher and recent K award winner, calls NPF funding at the start of a new project “absolutely crucial.” It enables researchers to generate enough data for a K award, which in turn prepares them to apply for the grand prize of medical research, R01 awards from the NIH. “The K award allows you to get a foot on the first rung of the ladder of NIH funding,” Johnston said.

Several NPF researchers have snagged the R01 prize, winning multimillion-dollar grants to advance their psoriatic disease research. We’re proud to celebrate three NPF researchers whose recent K awards put them on the first rung of the ladder.

Dr. Junko Takeshita of the University of Pennsylvania, winner of $40,000 NPF Medical Dermatology Fellowships in 2011 and 2012, won a K award to study treatment disparities in psoriatic disease.

Dr. Annemieke de Jong of Columbia University, winner of a $50,000 NPF grant in 2009, will study the relationship between skin lipids and inflammatory diseases like psoriasis with her K award.
Dr. Andrew Johnston of the University of Michigan, winner of a $50,000 Discovery Grant in 2010, a $75,000 Discovery Grant in 2015, and this year’s $75,000 Karen and Dale White Discovery Grant on behalf of the National Psoriasis Foundation Staff, will use his K award to study how a protein known as IL-36 drives inflammation in psoriasis.

“The K award allows you to get a foot on the first rung of the ladder of NIH funding.”

- Dr. Andrew Johnston
2016 FELLOWSHIPS

The National Psoriasis Foundation Fellowship Program aims to increase the number of clinician-scientists focused on studying and treating psoriatic disease and related conditions. In 2016, NPF awarded eight fellowships to study psoriasis, psoriatic arthritis and related conditions.

Amgen Medical Dermatology Fellowships

Fellow: Peter Hashim, M.D.
Mentor: Mark Lebwohl, M.D.
Icahn School of Medicine at Mount Sinai

There are many new, highly effective treatments for psoriasis on the market. Often, doctors prescribe these new drugs in combination with traditional therapies like topicals and other systemic treatments. But there is not enough data on how well these combinations work. This project investigates which treatment combinations are the safest and most effective.

Fellow: Shalini Krishnasamy, M.D.
Mentor: Kristina Callis Duffin, M.D.
University of Utah

Even though phototherapy is an effective treatment for psoriasis, many patients don’t use it because it can be expensive and inconvenient. This project addresses this problem by designing protocols for patients to receive phototherapy at home.

Fellow: Stephen Lockwood, M.D.
Mentor: Alexa Kimball, M.D., M.P.H.
Massachusetts General Hospital

The Health Belief Model uses psychology to predict how a patient’s disease affects their behavior. This project uses the Health Belief Model to better understand how patients’ beliefs and perceptions affect their decisions about treatment. With this better understanding, this model aims to develop strategies that will encourage them to get the treatment they need.

Fellow: Pablo Michel, M.D.
Mentor: Alan Menter, M.D.
Baylor Research Institute

We know people with psoriasis are at increased risk of cardiovascular disease and that this risk is elevated even in patients without classic risk factors for heart disease. This project will deepen our understanding of the relationship between psoriasis and cardiovascular disease by analyzing the genes of people with psoriasis and heart disease, and by comparing the risk of heart disease in people with psoriasis to that of people with diabetes.
Awareness is growing about the relationship between psoriatic disease and comorbidities like cardiovascular disease. Researchers are now investigating whether treating psoriatic disease can prevent these comorbidities. This project explores whether psoriatic disease treatments can reduce the incidence of cardiovascular disease in people with psoriasis.

The makeup of the bacteria living in the intestines, known as the gut microbiome, may play a role in psoriasis. This project studies the intestines and gut microbiome to understand their relationship to inflammation and to see whether people with psoriasis have a similar gut microbiome to people with other diseases.

The Koebner phenomenon occurs when a skin injury leads to a psoriasis flare. This project investigates what drives the Koebner phenomenon by analyzing which genes are expressed when this occurs. Understanding this process may help researchers develop more targeted treatments.
NIH-NPF Robertson Fellowship in Translational Medicine

The NIH-NPF Robertson Fellowship in Translational Medicine provides support for an early career clinical and translational scientist to conduct research at the National Institutes of Health focusing on research and patient care in psoriasis, psoriatic arthritis or related comorbidities.

Fellow: Yvonne Baumer, Ph.D.
Mentor: Nehal Mehta, M.D.
National Heart, Lung, and Blood Institute

Scientists are learning more about why people with psoriasis and psoriatic arthritis are at higher risk for cardiovascular disease. This project explores the link between psoriasis and heart disease so scientists will have more clues to understanding how to treat cardiovascular disease in people with psoriasis.
RESEARCH SYMPOSIUM

In July 2015, the National Psoriasis Foundation brought together more than 100 researchers and physicians studying psoriatic disease for NPF’s Research Symposium. The Symposium provided an opportunity for leaders in the field—who count many NPF-funded scientists among their ranks—to share discoveries, foster connections and take strides toward tomorrow’s advances in psoriasis and psoriatic arthritis. Coinciding with the Research Symposium was NPF’s National Volunteer Conference, which added to the mix more than 200 people living with psoriatic disease. Researchers and patients crossed paths and exchanged ideas throughout the event, turning the gathering into an innovative display of collaboration-in-action. The next Symposium and Volunteer Conference will take place in August 2017 in Chicago.
CITIZEN PSCIENTIST: CROWDSOURCING RESEARCH BREAKTHROUGHS

A time machine would really help Alisha Bridges in her battle with psoriasis. One thing she might do is go back in time to get vaccinated for the chicken pox virus. Having chicken pox as a child may have triggered her psoriasis, she said.

Then again, she might use that time machine to speed ahead into the future to a day when patients can take an easy genetic test to tell if they are likely to get the disease. That way, they would know to be on the lookout for psoriasis and do what they could to manage their risk factors.

Fortunately, time travel isn’t the only way to bring the future of psoriatic disease closer. Groundbreaking research into treatment, diagnosis and even prevention is bringing tomorrow’s advances to today’s patients.

As a Citizen Pscientist, Bridges is at the leading edge of discovery.

Citizen Pscientist is an NPF program that connects scientists researching psoriatic disease with the real experts: people living with psoriasis and psoriatic arthritis. The online platform, which launched in 2015, enables patients to share information and form hypotheses, exploring things like symptoms, triggers and which treatments work best for them.

Patients involved in the program tell researchers what they’d like to know more about, and researchers can use the data to launch new projects to help answer their questions.

Now 28, Bridges was diagnosed with psoriasis at age 7. That’s more than 20 years of doctors’ appointments and medications. At this point, she wants to know what treatments will do to her in the long run. She also wants researchers to pay attention to the emotional and mental aspects of the disease, she said.
As a long-time volunteer with NPF—and winner of our 2015 Outstanding Volunteer Leadership Award—Bridges has the inside track on psoriatic disease research. Top scientists in the field know her by name. But to her, the real power of Citizen Pscientist is that it’s not just for the insiders.

“It gives everyone in the psoriasis community the opportunity to have their voice heard through their experience,” she said. “It lets doctors and researchers know that, as patients, we’re serious about our quality of life and our quality of care.”

Dr. April Armstrong is one of those scientists who’s on a first name basis with Bridges. Armstrong is associate professor of dermatology and associate dean for clinical research at the University of Southern California. She’s also on NPF’s Medical Board, and is one of the researchers involved in Citizen Pscientist.

Much of her work focuses on identifying modifiable risk factors for psoriasis and developing ways to predict which patients will develop psoriatic arthritis, she said.

“I think for researchers, it’s certainly good to know what is of primary importance to our patients,” she said.

Working with researchers and tracking her experiences with the disease makes Bridges more proactive with her own doctor.

“I speak up for myself, and I’m my own patient advocate,” she said.

Bridges calls herself a “Psoriasis Conqueror.” For her, NPF is a critical ally in the everyday battles and the long-term struggles of living with psoriatic disease.
2016 EARLY CAREER RESEARCH GRANTS

Early Career Grants support graduate students and postdoctoral researchers conducting research on psoriatic disease and related comorbidities. These grants help launch innovative projects and encourage young scientists to focus their research on psoriatic disease. This year, NPF awarded four $50,000 Early Career Research Grants.

Jackelyn Golden, Ph.D.
Case Western Reserve University
This project studies the mechanisms that drive the increased risk of cardiovascular disease in people with psoriasis by exploring how white blood cells may clump together and whether this clumping contributes to cardiovascular disease. Findings could help researchers devise ways of breaking up these clumps to reduce the rate of cardiovascular events in psoriasis patients.

Oliver Harrison, Ph.D.
National Institute of Allergy and Infectious Diseases
Previous research has linked disruptions to the bacteria on the skin or tonsils to psoriasis. This project investigates how specific types of bacteria found on the skin may affect the immune system and contribute to psoriasis.

Denuja Karunakaran, Ph.D.
University of Ottawa
This project explores how problems in the way white blood cells control cholesterol levels in the blood of people with psoriasis may lead to heart attack or stroke in psoriasis patients, and how this process could be prevented by targeting a molecule called miR-33.
Denis Mogilenko, Ph.D.
University of Lille

Evidence suggests that obesity and psoriatic disease may be connected. This project investigates what is driving the link by exploring the idea that fat may change the way certain immune cells function. Findings from the project may point toward therapeutic or dietary interventions for treating psoriasis in obese patients.
As directed by our strategic plan adopted in July 2014, we will accelerate discovery to cure psoriatic disease by:

- Increasing the number of dollars invested annually in psoriatic disease research
- Increasing the number of scientists studying psoriatic disease
- Creating a community of people with psoriasis and psoriatic arthritis who collaborate in research
- Initiating regular progress reports in key areas of psoriatic disease research such as causes, diagnosis, prevention and cures
- Investing 30 percent or more of annual NPF expenses in research

Our highest priority is to find a cure.

Together we will end psoriatic disease.

There are several ways you can support our work. Find out more at www.psoriasis.org.
BOARD OF DIRECTORS

Colby Evans, M.D.
Chair
Austin, Texas

Pete Redding
Chair-Elect
Reno, Nev. and Scottsdale, Ariz.

Chip Newton
Vice-Chair
St. Petersburg, Fla.

Terri Theisen
Treasurer
Atlanta

Carol Ostrow
Secretary
New York

Steve Bishkoff
Oakhurst, N.J.

Ron Grau
Boca Raton, Fla.

Matthew Kiselica
Irving, Texas

Holly Fields Krafsur
El Paso, Texas

Michael Laub
Scarsdale, N.J.

Jason Lichten, M.D., F.A.C.S.
Bexley, Ohio

Ben Lockshin, M.D., F.A.A.D.
Silver Spring, Md.

Pete Miller
Tualatin, Ore.

Mark Oberman
Del Mar, Calif.

Nate Paul
Austin, Texas

Rick Seiden
Los Angeles

Abby S. Van Voorhees, M.D.
Norfolk, Va.

Randy Beranek
President and CEO
Portland, Ore.

ex officio:
Kris Kellogg
Immediate Past Chair
Miami

Kathleen Gallant
IFPA Representative
Finleyville, Pa.

MEDICAL BOARD

Abby S. Van Voorhees, M.D.
Chair
Eastern Virginia Medical School
Norfolk, Va.

April Armstrong, M.D., M.P.H.
Keck School of Medicine of USC
Los Angeles

Jerry Bagel, M.D.
Psoriasis Treatment Center of Central New Jersey
East Windsor, N.J.

Erin Boh, M.D., Ph.D.
Tulane University School of Medicine
New Orleans

Kristina Callis Duffin, M.D., M.S.
University of Utah School of Medicine
Salt Lake City

Richard Friedman, M.D., Ph.D.
Yardley Dermatology Associates
Yardley, Pa.

Amit Garg, M.D.
Hofstra North Shore – LIJ School of Medicine
Manhasset, N.Y.

Alice Gottlieb, M.D., Ph.D.
New York Medical College
Valhalla, N.Y.

Lawrence Green, M.D.
George Washington University School of Medicine
Rockville, Md.

Elaine Husni, M.D., M.P.H.
Case Western Reserve University
Cleveland

John Koo, M.D.
University of California San Francisco
School of Medicine
San Francisco

Gerald G. Krueger, M.D.
Chair Emeritus
University of Utah Medical School
Salt Lake City

Richard Langley, M.D.
Dalhousie University
Halifax, Nova Scotia

Mark Lebwohl, M.D.
Chair Emeritus
Icahn School of Medicine at Mount Sinai
New York

Abrar Qureshi, M.D., M.P.H.
Warren Alpert Medical School of Brown University
Providence, R.I.

Caitriona Ryan, M.D.
Menter Dermatology Research Institute
Dallas

Sergio Schwartzman, M.D.
Weill Cornell Medical College
New York

Kara Shah, M.D.
University of Cincinnati College of Medicine
Cincinnati

Evan Siegel, M.D.
Arthritis and Rheumatism Associates
Rockville, Md.

Jeffrey Weinberg, M.D.
Mount Sinai St. Luke’s and Mount Sinai Beth Israel
New York

Jashin Wu, M.D., F.A.A.D.
Kaiser Permanente Los Angeles Medical Center
Los Angeles

Paul S. Yamauchi, M.D., Ph.D.
David Geffen School of Medicine
University of California, Los Angeles
Santa Monica, Calif.

Nehal Mehta, M.D., M.S.C.E., F.A.H.A.
National Institutes of Health
Bethesda, Md.

Joseph Merola, M.D., M.M.S.
Harvard Medical School
Boston

Ronald Prussick, M.D., F.R.C.P.
George Washington University
Rockville, Md.

Lists current as of August 2016